
On the finiteness of nonderivative nonpolynomial Lagrangians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 1473

(http://iopscience.iop.org/0022-3689/5/10/012)

Download details:

IP Address: 171.66.16.72

The article was downloaded on 02/06/2010 at 04:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/10
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Gen. Phys., Vol. 5 ,  October 1972. Printed in Great Britain. 0 1972 

On the finiteness of nonderivative nonpolynomial Lagrangians 

B W KECK and J G TAYLOR 
Mathematics Department, University of London 
King's College, Strand, London WC2R 2LS, UK 

MS received 7 June 1972 

Abstract. It is shown how to achieve a finite (and unitary and causal) S matrix for a large 
class of nonderivative nonpolynomial Lagrangians. 

1. Introduction 

It has been suggested that nonpolynomially interacting quantum fields give rise to 
S matrix elements which do not contain the standard high energy divergences of poly- 
nomially interacting fields. The particularly simple exponential interaction G ea@' of a 
scalar field 4 and related interactions have been much discussed recently, particularly 
in the second order in the major coupling constant G. From this it has been conjectured 
(Salam 1971) that the exponential interaction will always damp out the high energy 
divergences of any polynomial multiplying it in the interaction. We wish to discuss 
this conjecture here and more generally to determine as large a class as possible of 
nonpolynomial interactions which give finite, unitary and analytic S matrix elements to 
all orders in the interaction. 

In a previous paper (Taylor 1971a, to be referred to as I) one of us showed how to 
construct an S matrix finite, unitary and causal to all orders in the major coupling 
constant for the exponential interaction with zero mass. Here we extend this result to 
a large class of nonderivative massless nonpolynomial Lagrangians. Our class includes 
both localizable interactions, like the exponential, for which the results can be said to be 
causal, and nonlocalizable, for which the definition of causality is more difficult (Taylor 
1 97 1 b). 

In $ 2 we summarize the work on the exponential interaction published before, then 
the results of I. 

In $ 3 we summarize the work on other interactions, in particular discussing the 
condition of localizability in lowest order. 

In 9 4 we give the S matrix for a general Lagrangian as a superposition of S matrices 
for exponential interactions. This allows us to derive conditions on the Lagrangian for 
finiteness, unitarity and causality of the S matrix. 

In $ 5 we consider the special cases #' e", 4n and various interactions with several 
fields. We find that the presence of the exponential is crucial for our results, so verifying 
Salam's conjecture. 

In $ 6  we discuss the problem of the selfmass, which is particularly difficult in the 
massless case owing to  the infrared divergence. We describe a solution. 
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2. Previous discussions 

The two point function has been given by many people (Okubo 1954, Volkov 1968, 
Delbourgo et al 1969, Lehmann and Pohlmeyer 1971, Mitter 1970). The methods vary: 
the 'superpropagator' e'**. A = { i( + m 2 ) )  - ', may undergo several operations-an E 

inserted, Fourier transform taken, J. moved to the imaginary axis, and for momenta 
moved to the euclidean region then have appropriate limits taken and continuations 
made. 

All effectively decide the values of the otherwise arbitrary constants one obtains by 
leaving out the divergent parts of An in 

and so give unitarity and analyticity provided the part thrown away is imaginary-- 
it may be necessary to arrange this for example by taking a certain weighted average of 
different continuations back to real 2. Lehmann and Pohlmeyer (1971) have shown that 
among the sets of values given by the various methods there is one such that the rate of 
growth of the amplitude for space-like momenta is minimal with respect to all possible 
sets of values. 

The three point function has received some special attention from Daniel1 and 
Mitter (1971). and Pohlmeyer (1972). The) show the existence of a minimal singularity 
prescription compatible with unitarity and causality. 

For higher orders definitions of S matrix elements have been given by Efimov (1965), 
Salam and Strathdee (1970) and Fukuda (1970). Efimov's results are cut-off dependent 
and nonlocal, and the cut-off is arbitrary. Due to these defects we will not consider his 
method further here. Salam and Fukuda both give formal discussions with no attempt 
to prove finiteness for physical values of the momenta. 

In I, the S operator is given by 

S =  E--: (iG)" !" dx, e'4(xJ: S(x, . . . xv)  
v 2 0  N !  1 = 1  

where 

S(x, . . . xN) = lim S(x ,  . . . x ,~ ) .  
€10 

S'(xl . . . xN) is the valge of Sl;(x, . . . xN) at y = 1, continued from y > 5 where 

dzijA2"J( - (p;+ ir)/16n2}"i~-2 
tan nzijr(zij - l)r(zij)r(zij + 1) sin nyzij 

S ; ( p ,  . . . p,) = fi -1 j * j 
i <  32n ( 2 ~ ) ~  

N I \ 

where p i j  = -pji, the zi j  contour is parallel to the imaginary axis between 0 and - 1. 
Continued forms of unitary and causality were derived for %,@, . . . p N )  and it was 

shown in I that these could then be continued back to give unitarity and causality for 
the physical S matrix elements. The conjecture of Lehmann (1971) concerning the exist- 
ence of a minimal singularity prescription for all orders has not yet been proved. 
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Let us now consider the general nonpolynomial interaction 
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(2) 

The 2-point function G(xlx2) in second order in the interaction is 
2 G(xlx2) = -(n+ a,+ 1 l)An+'(xl -x2). 

,SO n .  

In momentum space, for large P2, the regularized version of G obtained for example by 
using Mellin integral techniques, behaves as 

In order that G is a generalized function that is localizable it is necessary that G(P) 
increase for large P2 slower than exp(JIP2J). This requires that a, has exponential 
growth of order & at infinity with 01 -= 1. If c1 is larger than 1 the theory is nonlocalizable. 

The discussion in I proved finiteness unitarity and causality of all the higher order 
interactions, under the same restrictions on the order of growth of the coefficients a,. 

3. Conditions for finiteness 

It appears most suitable to consider the interaction Lagrangian in the form used in I, 
that is, as a superposition of exponentials. We take instead of (2) the expression 

Lint(+) = : s dAp(A) ea@: 

where 

a, = 1 d;lp(A)A" (3) 

The discussion in I showed that unitarity and causality will be automatically satisfied 
by a large class of weight functions p. Let us now discuss in detail the conditions on p 
for finiteness. The expression (1) has to be modified in this case by replacing the factor 
A 2 +  by (,liijY6J and then multiplying by lly= p(Ai )  dAi. The integrand in the resulting 
expression, regarded as a function of the variables ,Il . . . AN is not analytic. It is possible 
to evaluate in detail the singularity structure. This arises from the residues of the modified 
integrand in (1) on reforming the zij contours to encircling the non-negative integers. 
These residues, as can be seen by inspection of (l), will contain non-negative integral 
powers of the Ai, multiplied by powers of In Ai .  The power of each Ai that arises in the 
modified version of (l), is just 

There are at least two lines that enter i. For each of these, only residues for zij 2 1 
can arise, thus the power of Ai that arises in a particular residue is always at least two ; 
there may also be a power of In Ai present. This is clearly seen in the two point function 
in lowest order, which has a A2 In 1 behaviour. In order that the integral over the 
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1 lo dAp(A)R(ln < E .  (4) 

where c is some constant, after exclusion of intermediate single particle poles. 
When we use the interaction ( 3 ) ,  we have to evaluate 

and the bound (5) becomes 
I .  

In order for this to be finite, we impose the condition that p(i.) decreases for large i. 
faster than exp( -ib2'3), in other words is an element of the function space S,, for any 
tl < i. for large i.. Thus we require 

p ( i )  E G; 

where 

G, = i&i):l4(,i)l < exp(i' '1 as L + x : .  17) 

The conditions, then, on p that are finally arrived at, are (4) and (7). 

find using (3) 
Let us consider briefly the class of p that give localizability. For p satisfying (7) ,  we 

lan/ 6 JoL dir," exp( - I 1  "1 

x r(ntl + 
so that we certainly have localizability if x < &. It is to be expected that localizability 
fails if ct > $; the case p(%) = e-" gives a, = r(in+f), which is on the verge. Thus we 
see that the finiteness condition still allows a large case of nonlocalizable interactions to 
be discussed including the simple case of rational functions of 4.  We see this by a partial 
fraction expression with p ( A )  = e-' for the interaction 1/(1-14). 

4. Special cases 

Let us turn first to the interactions conjectured to be finite to all orders by Salam. 
These are &' el'0@', for n = 0, 1, 2 , .  . . . The corresponding weight functions p are 
6'"'(A-1,) which as we see satisfy both conditions (4) and (7) of the previous section. 
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If we wish to return to the polynomial domain by letting 2 ,  go to zero we meet a violation 
of condition (4) as soon as n >, 2 ,  due to the fact that 

as lo -+ 0 if n 2 2. In this way we meet again the standard ultraviolet divergences of 
polynomial quantum field theories. We note in passing that eA@- 1-24  is thus finite 
to all orders, but e'@- 1 -A$ 

When we turn to consider several fields, we see that the exponential of one field 
can be used to damp out ultraviolet divergences arising from a polynomial interaction 
in another. Thus, let us consider the interaction Lagrangian x" eK@ where x and 4 are 
both massless. This has the exponential representation 

is not, though this latter is in lowest order. 

JOm dip@): eAXfK@:  

where p(2)  = 6("1(3L). The superpropagator in this case is 

9 (9) (T(eAX1 +tidl eAXz+K@Z }), = e ( j . 2 + ~ 2 1 A ~ z  

The higher order terms arising from (8) involve replacing E.' in (9) by iiij so that we have, 
on taking residues in the zij variables, expressions of the form 

1 1 (x2 + jeiij)miJlln(x2 + 2iij)l"g~p(E&(%j) d l ,  d i j .  
J J  

In spite of the delta function behaviour of p, all these expressions are finite, due to the 
presence of K'.  This interaction of the form (8) gives finite results to  all orders provided 
p ( i )  satisfies condition (7) for large l and is a distribution in i, inside a bounded region. 
This evidently includes the interactions x" eK@ we started with. 

5. Selfmass 

We have taken a general interaction and assumed that the physical mass is zero. This 
of course is only so under certain conditions on the Lagrangian, those such as make 

SIP) = IP) 

for all single particle states Ip ) .  
In first order in the major coupling constant this requires that the interaction 

contain no mass term. An example of such an interaction belonging to the class given 
by (7) is 

Any interaction satisfying (7) can be given zero selfmass in first order by a similar sub- 
traction. 

In higher orders we have an additional problem, that of infrared divergence. This 
difficulty is basically that arising from the term proportional to In( - P 2 )  in the single 
particle Green function, this being infinite at P 2  = 0. This is not present in the massive 
case, when the term becomes ln(4m2 - P'), being finite at P 2  = m2. This term corres- 
ponds to the logarithmically divergent terms in the nonregularized perturbation ex- 
pression, that is, the expansion in powers of both major and minor coupling constants. 

G e'@ - +GI4 e'@. 
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There can be many higher order terms that contribute. These are absent if there are 
no 42 and d3 terms in the interaction Lagrangian. To see this, take any diagram with 
N vertices, L internal lines, and two external lines. The degree of divergence of such a 
graph will be 

d 4(L-N+1)-2L= 2L-4N+4. 

We assume that at each vertex there are at least four lines, so that 4N < 2L + 2. Thus 
d >, 2. This will correspond to the absence of the term ln(-R2PZ) in the regularized 
version, but of course allowing terms (A2P2)'(ln( - ~ ~ z P z ) } s  for r 2. These terms are 
zero at P 2  = 0, as required for stability of single particle states. 

We can remove the 43 term by a subtraction similar to that which removed the 42 
term, and in various ways. An example of a suitably subtracted interaction derived from 
the exponential is 

e'@{ 1 - $A$ + 
A simpler one is 

e@ 

for any n 2 4. The particular Lagrangian chosen will depend on further physical con- 
ditions. 

References 

Daniel1 R and Mitter P K 1971 University of Maryland Technical Report 72-056 
Delbourgo R, Salam A and Strathdee J 1969 Phys. Reo. 187 1999-2007 
Efimov G V 1965 Nucl. Phys. 74 657-68 
Fukuda R 1970 University of Tokyo Preprint 
Lehmann H and Pohlmeyer K 1971a Commun. math. Phys. 20 101-10 
-!971b Proc. Coral Gables Conf. ed Dal Cin, Iverson and Perlmutter (New York: Gordon and Breach) 

Mitter P K 1970 Oxford University Preprint 
Okubo S 1954 Prog. theor. Phys. 11 80-94 
Pohlmeyer K 1972 Institute for Advanced Study Preprint, Princeton 
Salam A 1971 Proc. Coral Gables Conf ed Dal Cin, Iverson and Perlmutter (New York: Gordon and Breach) 

Salam A and Strathdee J 1970 Phys. Rev. D 2 2869-76 
Taylor J G 1971a J. math. Phys. to be published 
__ 1971b Ann. Phys. 68 48498 
Volkov M K 1968 Ann. Phys. 49 202-18 

PP 6c-8 

PP 3-41 


